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Abstract—Privacy policies are long, complex documents that
end-users seldom read. Privacy labels aim to ameliorate
these issues by providing succinct summaries of salient data
practices. In December 2020, Apple began requiring that
app developers submit privacy labels describing their apps’
data practices. Yet, research suggests that app developers
often struggle to do so. In this paper, we automatically
identify possible discrepancies between mobile app privacy
policies and their privacy labels. Such discrepancies could
be indicators of potential privacy compliance issues.

We introduce the Automated Privacy Label Analysis
System (ATLAS). ATLAS includes three components: a
pipeline to systematically retrieve iOS App Store listings
and privacy policies; an ensemble-based classifier capable
of predicting privacy labels from the text of privacy policies
with 91.3% accuracy using state-of-the-art NLP techniques;
and a discrepancy analysis mechanism that enables a large-
scale privacy analysis of the iOS App Store.

Our system has enabled us to analyze 354,725 iOS apps.
We find several interesting trends. For example, only 40.3%
of apps in the App Store provide easily accessible privacy
policies, and only 29.6% of apps provide both accessible
privacy policies and privacy labels. Among apps that provide
both, 88.0% have at least one possible discrepancy between
the text of their privacy policy and their privacy label, which
could be indicative of a potential compliance issue. We find
that, on average, apps have 5.32 such potential compliance
issues.

We hope that ATLAS will help app developers, re-
searchers, regulators, and mobile app stores alike. For
example, app developers could use our classifier to check
for discrepancies between their privacy policies and privacy
labels, and regulators could use our system to help review
apps at scale for potential compliance issues.

Index Terms—Natural Language Processing, Machine Learn-
ing, Transformers, Privacy Policies, Privacy Labels, iOS

1. Introduction

Notice is a cornerstone of privacy: entities collecting
information are expected to disclose the types of data
collected, and how it is used. Privacy policies serve as the
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primary mechanism for notice, yet research has shown that
privacy policies are long, complex documents that users
seldom read [20] [24] [23].

Privacy labels aim to ameliorate this issue by pro-
viding succinct descriptions of salient data practices in
an easy to consume format. In December 2020, Apple
began requiring that developers include privacy labels for
the apps they publish on the iOS App Store. However,
recent research suggests that mobile app developers often
struggle to understand and disclose their data practices.
[17] [31].

In this paper, we present work that addresses three sets
of research questions concerning the adoption and content
of privacy policies and privacy labels in the United States
iOS App Store.
1. What is the state of privacy policy and privacy label

adoption among iOS apps? Can app privacy policies
be easily accessed – specifically, how many apps have
direct links to their privacy policies in the App Store?
What percentage of apps have privacy labels? What
percentage have both?

2. Is it possible to predict privacy labels from the text
of privacy policies? Prior research indicates that de-
velopers struggle to create accurate labels. As a result,
privacy labels may not always reflect actual data prac-
tices [17], [15]. So, despite privacy labels being noisy,
is it possible to train reliable classifiers?

3. Finally, are privacy labels consistent with the text
of privacy policies? What types of discrepancies oc-
cur between privacy policies and labels? How many
discrepancies do apps have on average? Is there a
correlation between these rates and the popularity of
mobile apps?
To enable us to answer these research questions, we

developed the Automated Privacy Label Analysis System
(ATLAS). Our system analyzed iOS app metadata, privacy
policies, and privacy labels to flag instances where privacy
labels were not consistent with the text of their privacy
policies, which we characterized as potential compliance
issues. This was done using state-of-the-art natural lan-
guage processing techniques. ATLAS was designed to be
highly scalable and has enabled us to analyze 354,725 iOS
apps. This paper makes several key contributions:
1. A scalable pipeline that enables systematically scrap-

ing iOS metadata, including privacy policies URLs and



privacy labels. We include a machine learning model
that determines if an app’s privacy policy URL actually
leads to an English-language privacy policy.

2. An ensemble-based classifier that can effectively gen-
erate privacy labels from the text of privacy policies.
This enabled our classifier to identify if a privacy
policy “Collects” or “Does Not Collect” a data type,
for 32 separate data types.

3. A privacy analysis of the iOS App Store. We provided
an extensive analysis of data practice disclosure dis-
crepancies between the text of privacy policies and
their corresponding privacy labels in the iOS App
Store. We also include metrics such as privacy pol-
icy accessibility, privacy label adoption, and potential
compliance issue existence.
We hope that ATLAS will help app developers, re-

searchers, regulators, and mobile app stores alike. For
example, app developers could use our classifier to check
for discrepancies between their privacy policies and pri-
vacy labels. Meanwhile, app store operators and regulators
could use our system to monitor discrepancy trends to
effectively focus efforts on apps likely to have potential
compliance issues.

2. Background and Related Work

2.1. Privacy Labels

Figure 1: An example of a privacy label within the iOS
App Store. The image on the left shows an overview of
the app’s privacy label. The image on the right depicts a
more detailed summary of the app’s data collection.

2.1.1. iOS Privacy Labels. In December 2020, Apple
began requiring that all developers include “App Privacy
Details” describing their apps’ data collection practices
when uploading new versions of their apps, arguably
the largest adoption of privacy labels to date [11]. The
implementation is largely similar to the model proposed
by researchers in 2013 [13].

Figure 1 shows an example of an iOS privacy label
available within the iOS App Store. Apple takes a mul-
tilayered approach to privacy labels: users first encounter
a summarized version, but can choose to “See Details,”

which provides a more comprehensive overview of the
app’s data collection practices.

The iOS privacy label consists of four parts. First,
developers declare the data type(s) being collected by their
app. Then, for each data type, developers are required to
report how the data type is being used. Next, developers
must specify if the data type is “Linked to You,” which in-
dicates that it is being collected non-anonymously. Finally,
if the developer declares that the data type is “Linked
to You,” then they must declare if it is “Used to Track
You,” which indicates linking collected data for targeted
advertising or third-party data sharing [11].

2.1.2. Issues with iOS Privacy Labels. While iOS pri-
vacy labels are intended to help inform end-users about
apps’ data practices, they are not without issue. Recent
research suggests that developers face challenges in cre-
ating accurate privacy labels [17] [10]. After conduct-
ing interviews with iOS developers, the authors found
that misconceptions about privacy labels often resulted
in under- or over-reporting data collection [17]. Koch et
al. conducted an “exploratory statistical evaluation” of
11,074 iOS apps, and found that only a “small number
of apps provide privacy labels” [15]. They also conducted
a dynamic analysis of a small subset of 1,687 apps,
finding that 276 (16%) violated their own privacy labels
by transmitting data without declaration [15]. This work
expands on Koch et al. by conducting a broader statistical
evaluation on a much larger dataset, and by investigating
to what extent privacy labels are inconsistent with the text
of their privacy policies.

2.1.3. Generating iOS Privacy Labels. While iOS pri-
vacy labels have several issues, Li et al. suggest that
auto-generating privacy labels might help increase their
accuracy [17]. Tools, such as Privacy Label Wiz, aid
developers in creating privacy labels for iOS apps by
statically analyzing iOS app source code for signatures
such as plist permission strings, import statements, and
class instantiations [10]. Importantly, these tools can help
developers comply with regulations, such as GDPR, which
require accurate privacy notices [35].

Whereas Gardner et al. only focused on a small subset
of iOS privacy labels (9 of 32), this work aims to ana-
lyze data collection disclosure for all 32 data types [10].
Moreover, while [34] and [10] used static code analysis,
this work uses state-of-the-art natural language processing
techniques to generate privacy labels directly from the text
of privacy policies and compare the predicted labels with
those reported within the App Store.

2.2. Applicable Legislation

Regulatory requirements for privacy disclosures vary
by jurisdiction. However, the state of California and the
European Union – two of the largest digital markets –
have stringent privacy disclosure requirements. California
requires compliance through the CCPA and the European
Union through GDPR. Failure to provide accurate privacy
disclosures in both jurisdictions could have significant
legal ramifications.



2.3. Automated Mobile App Privacy Analyses

With millions of mobile apps, automation is the only
way to analyze privacy practices at scale. Dynamic anal-
ysis systems, such as TaintDroid, actively run apps and
monitor their behavior [8] [22]. While these techniques
give a true representation of an app’s behavior, it has
significant overhead, limiting scale. Dynamic analysis sys-
tems have also largely been limited to Android, though
recent systems have focused on iOS as well [29]. Static
analysis systems are far more scalable – by reasoning
about source code, systems like MAPS have been able
to analyze over a million Android apps [37] [36].

More recent work has focused on analyzing mobile
app privacy on iOS. Kollnig et al. found that Apple’s
recent changes requiring user permission to access device
identifiers and developers include privacy labels has made
tracking more difficult [16]. Balash et al. conducted a
large-scale longitudinal analysis of the App Store over
36 weeks, finding that of 1.6 million apps, only 60.5%
of apps provided privacy labels [2]. Xiao et al. conducted
a small scale privacy analysis by comparing the privacy
labels and binaries of 5,102 iOS apps, finding many
instances of non-compliance [29].

2.4. Natural Language Processing Techniques for
Document Classification

Natural Language Processing (NLP) has been a cor-
nerstone in semantically understanding and parsing pri-
vacy policies. Automated compliance systems, such as
MAPS and ATLAS, require the use of NLP to analyze
hundreds of thousands of privacy policies that would
otherwise take human annotators years to accomplish. Past
research has detailed the effectiveness of using NLP tech-
niques to analyze privacy policies for compliance analysis
using high-quality annotator labeled data (i.e. annotations
per privacy policy segment) from the APP-350 corpus
[26]. The authors formulated the identification of privacy
practice statements as a classification problem using one
classifier per privacy practice. [26].

This paper replicates the approach, with several key
differences. First, instead of focusing on policy segments,
this work formulates identification of data collection as
a document classification problem. Second, instead of
using annotator labeled data (such as from the APP-350
corpus), we use developer reported iOS privacy labels
as ground truth to describe the text of privacy policies.
Unlike annotator labeled data, privacy labels may not
be consistent with the text of privacy policies because
developers struggle to accurately create them [10] [17]. Fi-
nally, we experiment with additional state-of-the-art model
architectures for document classification.

Document classification is an extensively researched
field [14] [32] [30] [18]. Current state-of-the-art tech-
niques are based on the transformer model (such as BERT
and RoBERTa), which sidesteps traditional methods such
as recurrence [28] [6] [19]. However, documents are typ-
ically longer than the maximum sequence length allowed
by models such as BERT and RoBERTa – 512 tokens.
The Longformer model increases input sequence length
to 4096 tokens, which is better suited for document clas-
sification [3]. However, transformer-based models have

large computational overhead. The RegLSTM model was
proposed as a lightweight alternative for document clas-
sification and has been shown to outperform transformers
[1].

3. A Distributed Pipeline for Automated
Analysis

3.1. iOS App Sampling Strategy

We first began by identifying a candidate list of apps
to analyze. Prior work has relied on crawling mobile app
stores for app discovery; however, we found that not to be
necessary for this work [36]. Fortunately, Apple publishes
a categorized, alphabetical list of all available iOS Apps,
including popular apps per category [12]. On January 29th,
2023, we systematically crawled and scraped the website
to assemble a list of 918,293 unique apps available on the
United States iOS App Store. Of those apps, 4,846 are
classified as popular apps.

Next, we devised a sampling strategy to pick a subset
of apps to analyze. Conducting a simple random sample
of the entire App Store is the easiest way to generate a
representative sample of the entire App Store; however,
this approach is likely to miss heavy-hitters: frequently
downloaded apps that are more likely to be present on
users’s devices – popular apps. Conversely, sampling only
popular apps leads to a biased representation of the App
Store, as many apps are missed. We devised a hybrid
sampling strategy to create a set of apps likely to be
present on user’s devices and an unbiased representation
of apps available on the iOS App Store: we sampled all
4,846 popular apps in addition to a randomly selected set
of 350,000 non-popular apps. In total, our final dataset
comprised of 354,725 apps, as some app listings were
unable to be loaded.

3.2. Identifying Privacy Policies

iOS apps are required to provide a URL to their pri-
vacy policy. However, in many cases, these URLs would
lead to landing pages, or other unrelated webpages. To
accurately obtain privacy policies, we developed a logistic
regression classifier to determine if pages were English-
language privacy policies, similar to prior work [36]. We
collected and labeled a corpus of 918 iOS app privacy
policies, of which 67.3% were legitimate privacy policies,
and the rest were unrelated webpages. After training, we
evaluated our classifier on an unseen test set with 64
positive examples and 42 negative examples. Our classifier
was able to achieve 98.1% accuracy with an F1 score of
98.4% (precision = 100%, recall = 96.9%). To run our
system efficiently, we only classified pages directly linked
to by the provided privacy policy URL.

3.3. Design of a Distributed Infrastructure

The scale of our study necessitated the design, devel-
opment, and deployment of a highly parallelizable and
distributed data collection pipeline. This enabled us to
collect all data within a relatively short window. To this
end, we created an infrastructure as depicted in Figure 2.



Figure 2: A diagram of the ATLAS data collection
pipeline.

We utilized a driver node to coordinate work between N
worker nodes. Each worker node ran a headless Firefox
browser to replicate a real-world browser. This gave us the
ability to capture dynamically loaded content and follow
any webpage redirects – emulating the experience of a
real user. To avoid rate-limiting, we utilized a pool of N
proxy servers (one per worker) to increase the number of
available IP addresses. The SOCKS5 protocol was used
to connect worker nodes to proxies. After webpages were
retrieved, they were saved in a shared database.

Figure 3: A diagram of the number of processed apps
over time. Data collection began on January 29th, 2023
and ended on January 31st, 2023.

We began data collection on January 29th, 2023, and
our system ran until January 31st, 2023. We completed
data collection in two phases. Phase 1 focused on down-
loading app listings from the iOS App Store, and Phase 2
focused on downloading privacy policies. We used slightly
different configurations for each phase. Phase 1 utilized
one driver node with 49 worker nodes and 49 proxies;
whereas Phase 2 used one driver node with 80 worker
nodes and no proxies. Proxies were not required in Phase
2 since privacy policies were hosted on different domains,
so rate-limiting was not a concern.

As depicted in Figure 3, Phase 1 ran at a rate of
approximately 21,000 apps per hour. Around the 7.5-hour
mark, our proxy servers initiated a nightly-reboot cycle,
which caused the rate to diminish. After manual inter-
vention, our system resumed around the 15-hour mark.
9 proxy servers were no longer responsive, so our rate
slowed to approximately 19,000 apps per hour. Phase 2
began around hour 26 at an average rate of 20,500 apps
per hour. At around hour 45, we reran Phases 1 and 2 in an
attempt to re-download app listings and privacy policies
that timed out. We reran Phase 2 once more around the
60-hour mark to collect the final set of privacy policies.
In total, we were able to collect 345,725 apps.

3.4. Privacy Policy Accessibility and Privacy La-
bel Adoption

Figure 4: The chart on the left depicts the proportion
of webpages linked to by reported privacy policy URLs
in the iOS App Store. The chart on the right depicts
the proportion of apps providing direct links to privacy
policies and privacy labels in the iOS App Store.

We found several interesting trends upon analysis of
downloaded apps. Even though apps are required to link
to privacy policies, a substantial number of apps provided
extraneous links instead. As depicted in Figure 4, 5.0%
of apps provided dead links. Moreover, 54.7% of apps
provided links that led to extraneous webpages, such as
landing pages, home pages, and 404s. Only 40.3% of apps
provided direct links to legitimate privacy policies, which
we characterized as accessible privacy policies.

Next, we analyzed the adoption rate of privacy labels.
Apple began requiring apps published or updated after
December 2020 include privacy labels. Interestingly, we
discovered that 62.5% of sampled apps provided privacy
labels. A number substantially higher than those that
provided accessible privacy policies. As depicted in Figure
4, only 29.6% of apps (105,131 apps) provided both
accessible privacy policies and privacy labels. We focused
on this subset of apps to conduct our compliance analysis.

Finally, we analyzed the most common types of re-
ported data collection, as show in Figure 11. Unsurpris-
ingly, the most common data type collected was Crash
Data, followed by Product Interaction and Email Address.
Interestingly, Gameplay Content was the second least
reported type of data collected, even though Games were
the most common type of app in our dataset (and in the
App Store). Also indicated is the number of popular apps
reporting collection of each data type: the distribution
of collection across data types for popular apps approxi-
mately follows the same distribution as apps available in
the broader App Store.

4. Autogenerating Privacy Labels from Pri-
vacy Policies

We next focused our efforts on predicting privacy
labels from privacy policies. We formulated the task as a
supervised multi-class, multi-label document classification
problem, where the input was a privacy policy, and the
output was a set of collected data types, as indicated by
the privacy policy. We targeted the same 32 data types
included in iOS privacy labels. To reduce complexity,
we only identified which data types were collected, and
not how they were used. We also treated predicting each
data type as an independent binary classification problem:
we created 32 models, where each was responsible for
predicting a single data type.



4.1. Dataset Construction

Unlike prior research, which used high quality annota-
tor labeled privacy policies, we relied solely on developer
reported privacy labels to learn from privacy policies [26]
[36]. We began by filtering our downloaded set of apps to
those which provided both privacy policies and privacy
labels. This left us with 105,131 iOS apps. However,
upon analysis, we found many privacy policies to be
shared among apps – developers likely reused the same
privacy policy among many of their apps. We determined
policy uniqueness by comparing privacy policy URLs for
exact matches. In total, we found 34.5% of policies to be
duplicates, leaving us with 68,863 unique privacy policies.

Care was taken to preserve the structure of differing
privacy labels for identical privacy policies. We assumed
that shared privacy policies are written generally, so as to
be applicable to multiple apps. Privacy labels, however,
are constructed on a per app basis; therefore, they only
represent a subset of the privacy policy. As a result,
we reasoned that when duplicate policies were merged
together, their privacy labels needed to be combined by
taking the union of collected data types.

4.2. Sampling Procedure

While using developer reported privacy labels enabled
us to build a training corpus almost a hundred times
larger than previous work, our data was expected to be
somewhat “noisy” [26] [36]. Smaller scale analyses in the
past suggest that privacy labels may not be accurate [17]
[10]. While much work has been dedicated to learning
from noisy, mislabeled data ( [25], [33]), it is “unfair and
unreasonable to have noise in the” testing data [4]. We
outline a technique for importance sampling to help reduce
noise when creating training and testing datasets. For
clarity, we define a Positive instance as a privacy policy
associated with a privacy label that reported a particular
data type as being collected. A Negative instance is where
the data type is reported to not be collected.

(a) Random Sample (b) Clusters (c) Importance Sam-
ple

Figure 5: On the left is a a random sample of privacy
policies declaring / not declaring collection of the Name
data type. In the center is a depiction of clusters appearing
within the random sample. On the right is an importance
sample of the Name data type. For all three plots, each
point is a t-SNE representation of a privacy policy TF-IDF
embedding.

Figure 5a characterizes how noisy the underlying data
was by providing a depiction of a random sample of
the Name data type: we randomly sampled 500 policies
whose privacy label declared collection of Name, and 500

policies that did not. We then extracted an embedding
from each policy using TF-IDF vectorization and created a
two-dimensional representation using t-SNE [27]. There is
significant overlap between positive and negative instances
and no clear distinction between the two groups; this
suggests that many policies might be mislabeled.

However, as depicted in Figure 5b, natural clusters
tended to appear within the randomly sampled data. Points
were clustered using DBSCAN – since the number of
clusters was not known a priori and the underlying data
contains some noise – after performing Latent Semantic
Analysis (LSA) on the high dimensional TF-IDF embed-
dings [9] [7]. LSA was performed by using TruncatedSVD
to project the high-dimensional data onto 10 components.
We reasoned that these clusters are semantically similar
privacy policies and should therefore all have the same
privacy label (either positive or negative). For example,
if a cluster had 20 positive instances and 5 negative
instances, then the negative instances could potentially be
mislabeled, since the content of their privacy policies were
similar to many positive instances.

We assigned clusters a positive or negative label by
conducting a two-proportion z-test that compared the in-
cidence of positive to negative labels within a cluster. If
a cluster had a statistically significantly larger proportion
(i.e., p < 0.05) of one class than the other, we assigned
the cluster the label of the more prominent class. In cases
where determining cluster labels was inconclusive (i.e.,
p ≥ 0.05), we disregarded the cluster entirely. We then
computed centroids for all positive and negative clusters.

Finally, to construct a dataset of size N , with N
2

positive and N
2 negative examples, we conducted a ran-

dom oversample of N instances per class. Then, for each
class, we selected the N

2 examples closest to the class
centroids, effectively sampling points closer to centroids
with higher probability than those farther away. We also
equally weighted the contribution of each class centroid.
Each of the C centroids had approximately N

2C examples
associated with it. To account for edge cases where no
clusters were identified, we fell back to a simple random
sample.

This process was used to construct the test (N = 150),
validation (N = 150), and training sets (N = 1000), for
each data type. We had 4,376 unique examples within the
test sets, 4,262 unique examples within the validation sets,
and 22,262 unique examples within the training sets. In
total, we used 30,900 unique privacy policies to train and
evaluate our classifiers.

Intuitively, our sampling procedure can be thought of
as focusing on high-density areas with large amounts of
information more likely to be labeled correctly. Points
on the edge have a lower probability of being selected:
they are assumed to be less likely to be labeled correctly,
therefore contributing less useful information. Figure 5c
demonstrates how importance sampling creates a clear
separation between the positive and negative classes, in
contrast to random sampling shown in Figure 5a.

4.3. Model Selection

After constructing the datasets, we trained using sev-
eral model architectures. We used logistic regression as
our baseline architecture, with a similar configuration to



prior work [26]. We then graduated to using more complex
architectures: multilayer perceptron (MLP), RegLSTM,
BERT, RoBERTa, and Longformer. We conducted ex-
tensive hyperparameter tuning for each model, per data
type. Since we were training a separate model per data
type, we created a final “ensemble” model utilizing a
combination of architectures that maximized validation
Macro F1 Score.

Models were trained using PyTorch on four NVIDIA
GeForce RTX 2080 Ti GPUs [21]. In total, it took ap-
proximately 48 hours to hyperparameter tune and train 32
models across 6 different architectures.

Figure 6: Ensemble validation results per data type are
shown on the left, and improvement over the baseline
model is shown on the right.

Our final model was constructed with an ensemble of
architectures. Since each data type was trained separately,
we selected the architecture that maximized the Macro F1
score for that data type. In the case that multiple models
have identical Macro F1 scores, we selected the simplest
model. Figure 6 shows the selection of architecture per
data type, as well as overall improvement over the baseline
architecture. No singular architecture dominated; however,
the baseline architecture was highly competitive compared
to more complex architectures.

4.4. Model Performance

Figure 7: The final ensemble-based model test results per
data type.

Finally, we evaluated our ensemble of models on an
unseen set of test data. Figure 7 shows the test Macro
F1 score achieved per data type. Overall, we were able

to achieve an average accuracy of 91.3% and an average
Macro F1 score of 91.3% across all classes. Notably,
we were able to achieve a Macro F1 score of 100%
for Credit Info, with several other data types being the
high-90s. Table 3 provides detailed statistics about model
performance on the test dataset.

5. Discrepancy Analysis

After training our ensemble-based classifier, we used it
to predict privacy labels for the remaining privacy policies.
After removing training data, we were left with a set of
privacy policies corresponding to 61,596 iOS apps. The
following analysis is presented for those apps.

5.1. Characterizing Potential Compliance Issues

We first begin by characterizing a potential compliance
issue. For an arbitrary app, let P be the set of data types
collected by the app as disclosed in its privacy policy,
and let L be the set of data types collected by the app as
disclosed in its privacy label. Let D represent the set of 32
data types captured by iOS privacy labels, and let d ∈ D
be a single data type. We use d̂ to denote a predicted data
type. By definition, we can write P ⊆ D and L ⊆ D.

The first type of potential compliance issue is an In-
complete Privacy Policy (often shortened to Incomplete
Policy in the rest of the section):

∃ d ∈ D, such that (d̂ 6∈ P ) ∧ (d ∈ L)

Intuitively, an incomplete policy means that a privacy
policy does not disclose the collection of a data type, while
its developer reported privacy label does.

The second type of potential compliance issue is an
Incomplete Privacy Label (often shortened to Incomplete
Label):

∃ d ∈ D, such that (d̂ ∈ P ) ∧ (d 6∈ L)

Intuitively, an incomplete label is when collection of a data
type is disclosed within a privacy policy, but not within
the developer reported privacy label.

Potential compliance issues are on a per data type
basis. This means that the total number of potential com-
pliance issues per app in our analysis is capped at 32 (one
per data type).

We also took care to ensure that we only identified
potential compliance issues with high probability. Figure
12 shows the probability that a policy collects a par-
ticular data type (i.e. pd̂∈P ). Since we formulated this
as a binary classification problem for each data type,
pd̂ 6∈P = 1 − pd̂∈P . For example, as shown in 12a, most
policies have a high probability of collecting Name or
a high probability of not collecting Name; however, for
many policies, it is uncertain that they collect Precise
Location (Figure 12b), as many probabilities are near
50%. So, we only considered

(d̂ 6∈ P )⇐⇒ (pd̂∈P < 0.25)

(d̂ ∈ P )⇐⇒ (pd̂∈P > 0.75)



which is depicted by the two vertical lines in Figures 12a
and 12b. Intuitively, we only considered predictions with
high probability; otherwise, we classify the prediction as
“Inconclusive.”

5.2. Potential Compliance Issues by Data Type

We offer a breakdown of compliance issues by data
type, as show in Figure 8. Figure 8a, shows the rate of
incomplete policies by data type. The percentage for each
data type, d ∈ D, is the total number of incomplete
policies for d divided by the total number of apps where
d ∈ L. For example, 27.7% of apps have privacy policies
that do not declare collection of Name, even when their
privacy labels do.

Similarly, Figure 8b shows the rate of incomplete
labels by data type. The percentage for each data type,
d ∈ D, is the total number of incomplete labels for
d divided by the total number of apps where d 6∈ L.
For example, 42.9% of apps have privacy labels that do
not declare collection of Name, even when their privacy
policies do.

Of note are the high rates of incomplete policies within
financial disclosures: 62.4% of apps declaring Credit Info
and 63.9% of apps declaring Other Financial Info on
their privacy labels have incomplete privacy policies. This
particular set of potential compliance issues could be a
violation of the Gramm-Leach-Bliley Act [5].

5.3. Distribution of Potential Compliance Issues

TABLE 1: This table provides a cumulative distribution
of potential compliance issues.

Incomplete
Policies (%)

Incomplete
Labels (%)

Both (%)

1 or more 26.8 85.7 88.0
2 or more 14.3 72.9 76.1
3 or more 8.5 61.3 65.0

Figure 13 shows the distribution and cumulative distri-
bution of potential compliance issues. In particular, incom-
plete policies are far less common than incomplete labels,
with apps having an average of 0.62 incomplete policy
discrepancies and 4.70 incomplete label discrepancies.
When looking at the combination of incomplete policy and
label errors, apps have 5.32 potential compliance issues on
average.

Figure 13b depicts the CDF for each data type. Of
note, 26.8% of apps have at least one incomplete policy
discrepancy and 85.7% of apps have at least one incom-
plete label discrepancy. When analyzing both incomplete
policies and labels, 88.0% of apps have at least one
discrepancy. We provide additional percentages in Table
1.

5.4. App Rating vs Number of Potential Compli-
ance Issues

We also compared the trend between app rating and
number of potential compliance issues, as shown in Fig-
ure 9. Surprisingly, for incomplete policy compliance

issues, we found a weak, significant positive correlation
(r = 0.04, p < 0.05) between app rating and number of
incomplete policy discrepancies. That is, as the number of
incomplete policy discrepancies increase, the app rating
tends to increase.

While the previous result was surprising, the relation-
ship between app rating and incomplete label discrepan-
cies is as expected: we found a weak, significant negative
correlation (r = −0.011, p < 0.05). That is, as the number
of incomplete label discrepancies increase, the app rating
tends to decrease.

5.5. Potential Compliance Issues Among Popular
vs Other Apps

TABLE 2: This table provides the average number of
discrepancies among popular and other apps, categorized
by discrepancy type. Discrepancy types with significant
difference (p < 0.05) are signified with ∗.

Popular Apps Other Apps p value
Incomplete
Policies

0.67 0.66 0.877

Incomplete
Labels

4.48 4.78 0.005∗

Both 5.15 5.44 0.004∗

Finally, we compared the incidence of discrepancies
between popular and other apps. As shown in Figure
10 and Table 2, other apps (i.e. unpopular apps), tend
to have a statistically significantly higher number of in-
complete label discrepancies, on average, than popular
apps (p < 0.05). Consequently, when looking across all
discrepancies, other apps also have a higher number of
discrepancies, on average, than popular apps (p < 0.05).
There is no significant difference between the incidence
of incomplete policy discrepancies between popular and
other apps (p > 0.05).

We conclude from this comparison that popular apps,
on average, have fewer discrepancies than their counter-
parts. As popular apps represent apps likely to be on user’s
devices, this trend is reassuring; however, the incidence
of discrepancies among popular apps is still high, at an
average of 5.15 discrepancies per app.

6. Discussion

In Section 3, we outlined the development of a pipeline
to systematically download and analyze iOS App Store
listings. We found 62.5% of apps to provide privacy labels.
This is approximately the same, albeit slightly higher
than reported by Balash et al. in their work [2]. The
slightly higher percentage in our study likely reflects our
study being conducted several months after Balash et al.’s,
allowing more time for apps to include privacy labels.

In Section 4, we outlined a technique for predicting
iOS privacy labels from the text of privacy policies. To our
knowledge, this is the first work that has attempted such
a task. However, we acknowledge that our approach has
some potential limitations. In certain cases, Apple stipu-
lates that privacy labels may optionally disclose certain
data collection, but are not required to do so [11]. This



(a) Incomplete Policies (b) Incomplete Labels

Figure 8: Potential compliance issues by data type. The bar for each data type is stacked with two segments. The first
segment (in dark blue) indicates potential compliance issues (i.e. high probability predictions). The second segment (in
light blue) indicates inconclusive results (i.e. low probability predictions).

(a) Rating vs Incomplete Policy
Discrepancies

(b) Rating vs Incomplete Label
Discrepancies

Figure 9: The graph on the left depicts the correlation with
respect to incomplete policy discrepancies, and the graph
on the right depicts the correlation with respect to incom-
plete label discrepancies. Darker points represent a larger
number of apps (iOS App Store ratings are discretized in
tenths and discrepancies are integers). The shaded region
around each line represents a 95% confidence interval.

could lead to results that overestimate potential discrep-
ancies when looking at optional privacy label disclosures.
In principle, because less data collection is typically seen
as desirable, developers would typically be expected to
only disclose collection when required to do so. So,
assuming that our training data is biased towards required
disclosures, our resulting classifiers could be expected to
indicate positive instances only if they are truly required.

In Section 5, we described a large-scale analysis of
apps available on the iOS App Store. Prior work had
already provided evidence that iOS privacy labels can
be inaccurate [17], [31]. Our study seems to corroborate
these earlier results, though there may be multiple possible
interpretations of our results. To the extent that discrep-
ancies are indicative of potential compliance issues, we

Figure 10: A depiction of the average number of discrep-
ancies among popular and other apps. Discrepancies are
categorized by Incomplete Policy, Incomplete Label, and
Both.

find that as many as 88.0% of apps have at least one
potential compliance issue, with apps having an average
of 5.32 potential compliance issues. These results appear
generally consistent with prior work, albeit in slightly
different contexts. For example, Zimmeck et al. report
a mean of 2.89 potential compliance issues per app in
their large-scale analysis of Android apps; however, they
characterized potential compliance issues as discrepancies
between the text of privacy policies and static code anal-
ysis of Android apps [36]. Our work, on the other hand,
compares disclosures within privacy policies to those in
privacy labels. We also find that Incomplete Label dis-
crepancies were more common than Incomplete Policy
discrepancies. This could likely be a byproduct of privacy
policies being written to be more general and permissive
than privacy labels. Privacy policies are more likely to be
written by lawyers, whereas privacy labels are more likely
to be created by developers. Additionally, some policies
are known to apply to multiple apps, and even some
websites, which could explain why they may disclose



practices that an app may not engage in. Privacy labels,
on the other hand, are created for each app and would
be more likely to only disclose practices an app actually
engages in. Accordingly, incomplete privacy policies are
more likely to be indicative of privacy compliance issues
than incomplete privacy labels.

Several avenues exist to extend this work. For exam-
ple, future work could extend our approach beyond the
identification of data collection disclosures and include
disclosures related to how data is used. Additionally,
future research could compare the text of iOS privacy
policies to static and dynamic analyses of iOS apps, which
would provide a more precise understanding of whether
the discrepancies reported in our research correspond to
actual compliance issues or whether they just reflect dif-
ferent approaches to deciding what to disclose.

7. Conclusion

Privacy labels have been proposed as usable mecha-
nisms to help users better understand salient data practices
found within privacy policies. In December 2020, Apple
began requiring that all iOS apps include privacy labels,
arguably the largest adoption of privacy labels to date;
however, prior work has questioned the accuracy of such
labels [17] [10].

In this work, we introduced the Automated Privacy
Label Analysis System (ATLAS). ATLAS enabled us to
provide a detailed analysis of 354,725 iOS apps available
on the United States iOS App Store. We found that privacy
policy accessibility and privacy label adoption is relatively
low, with only 62.5% of apps providing privacy labels.
We also developed an ensemble-based classier that was
able to accurately predict privacy labels from privacy
policies with 91.3% accuracy. We then used our clas-
sifier to conduct a compliance analysis, finding several
interesting trends. For example, 88.0% of apps had at
least one discrepancy between the text of their privacy
policy and their privacy label. On average, we found iOS
apps to have 5.32 discrepancies. These discrepancies could
potentially be indicative of compliance issues. We hope
that our work enables a thorough review of privacy labels
to help promote accurate privacy disclosures in the future.

Acknowledgements

This research has been supported in part through
grants from the National Science Foundation under its Se-
cure and Trustworthy Computing program (CNS-1801316
and CNS-1914486) and in part through an unrestricted
grant from Google under its “privacy-related faculty
award” program. The US Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notice. The views and con-
clusions contained herein are those of the authors and
should not be interpreted as representing the official poli-
cies or endorsements, either expressed or implied of NSF,
the US Government, or Google. This research has been
partially supported by the project TED2021-130455A-I00
funded by MCIN/AEI/10.13039/501100011033 and the
Europea Union “NextGenerationEU”/PRTR.

References

[1] Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and Jimmy Lin.
Rethinking complex neural network architectures for document
classification. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4046–4051, 2019.

[2] David G Balash, Mir Masood Ali, Xiaoyuan Wu, Chris Kanich,
and Adam J Aviv. Longitudinal analysis of privacy labels in the
apple app store. arXiv preprint arXiv:2206.02658, 2022.

[3] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer:
The long-document transformer. arXiv preprint arXiv:2004.05150,
2020.

[4] Don Blaheta. Handling noisy training and testing data. In Pro-
ceedings of the 2002 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2002), pages 111–116, 2002.

[5] Federal Trade Commission. Gramm-leach-bliley act.
https://www.ftc.gov/business-guidance/privacy-security/
gramm-leach-bliley-act, 2023. Accessed: 2023-03-13.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[7] Susan T Dumais et al. Latent semantic analysis. Annu. Rev. Inf.
Sci. Technol., 38(1):188–230, 2004.

[8] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar,
Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel,
and Anmol N Sheth. TaintDroid: an information-flow tracking
system for realtime privacy monitoring on smartphones. ACM
Transactions on Computer Systems (TOCS), 32(2):1–29, 2014.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In kdd, volume 96, pages 226–231, 1996.

[10] Jack Gardner, Yuanyuan Feng, Kayla Reiman, Zhi Lin, Akshath
Jain, and Norman Sadeh. Helping mobile application developers
create accurate privacy labels. In 2022 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW), pages 212–230.
IEEE, 2022.

[11] Apple Inc. App privacy details - app store.

[12] Apple Inc. iTunes preview. https://apps.apple.com/us/genre/
ios-books/id6018, 2023. Accessed: 2023-03-13.

[13] Patrick Gage Kelley, Lorrie Faith Cranor, and Norman Sadeh.
Privacy as part of the app decision-making process. In Proceedings
of the SIGCHI conference on human factors in computing systems,
pages 3393–3402, 2013.

[14] Yoon Kim. Convolutional neural networks for sentence classi-
fication. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1746–
1751, Doha, Qatar, October 2014. Association for Computational
Linguistics.

[15] Simon Koch, Malte Wessels, Benjamin Altpeter, Madita Olver-
mann, and Martin Johns. Keeping privacy labels honest. Proceed-
ings on Privacy Enhancing Technologies, 4:486–506, 2022.

[16] Konrad Kollnig, Anastasia Shuba, Max Van Kleek, Reuben Binns,
and Nigel Shadbolt. Goodbye tracking? impact of iOS app tracking
transparency and privacy labels. In 2022 ACM Conference on
Fairness, Accountability, and Transparency, pages 508–520, New
York, NY, USA, 2022. Association for Computing Machinery.

[17] Tianshi Li, Kayla Reiman, Yuvraj Agarwal, Lorrie Faith Cranor,
and Jason I Hong. Understanding challenges for developers to
create accurate privacy nutrition labels. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems, pages
1–24, 2022.

[18] Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang.
Deep learning for extreme multi-label text classification. In Pro-
ceedings of the 40th international ACM SIGIR conference on
research and development in information retrieval, pages 115–124,
2017.

https://www.ftc.gov/business-guidance/privacy-security/gramm-leach-bliley-act
https://www.ftc.gov/business-guidance/privacy-security/gramm-leach-bliley-act
https://apps.apple.com/us/genre/ios-books/id6018
https://apps.apple.com/us/genre/ios-books/id6018


[19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi,
Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and
Veselin Stoyanov. RoBERTa: A robustly optimized BERT pre-
training approach. arXiv preprint arXiv:1907.11692, 2019.

[20] Aleecia M McDonald and Lorrie Faith Cranor. The cost of reading
privacy policies. Isjlp, 4:543, 2008.

[21] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Ed-
ward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca
Antiga, and Adam Lerer. Automatic differentiation in PyTorch.
2017.
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A. Data Collection by Data Type

Figure 11: A depiction of the number of apps declaring collection of each data type.



B. Ensemble Model Test Results

TABLE 3: The following table summarizes the performance of the final ensemble model on the test dataset.

Test Acc (-/+) Macro F1 F1 (-/+) Prec (-/+) Recall (-/+) Support (-/+)

Name 0.99, 0.92 0.95 0.95, 0.95 0.93, 0.99 0.99, 0.92 75, 75
Email Address 0.89, 0.96 0.93 0.92, 0.93 0.96, 0.90 0.89, 0.96 75, 75
Phone Number 0.91, 0.95 0.93 0.93, 0.93 0.94, 0.91 0.91, 0.95 75, 75
Physical Address 0.95, 1.00 0.97 0.97, 0.97 1.00, 0.95 0.95, 1.00 75, 75
Other User Contact Info 0.96, 1.00 0.98 0.98, 0.98 1.00, 0.96 0.96, 1.00 75, 75
Health 0.92, 0.97 0.95 0.95, 0.95 0.97, 0.92 0.92, 0.97 75, 75
Fitness 0.93, 0.92 0.93 0.93, 0.93 0.92, 0.93 0.93, 0.92 75, 75
Payment Info 0.99, 0.96 0.97 0.97, 0.97 0.96, 0.99 0.99, 0.96 75, 75
Credit Info 1.00, 1.00 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 75, 75
Other Financial Info 0.97, 1.00 0.99 0.99, 0.99 1.00, 0.97 0.97, 1.00 75, 75
Precise Location 0.96, 0.99 0.97 0.97, 0.97 0.99, 0.96 0.96, 0.99 75, 75
Coarse Location 0.79, 0.89 0.84 0.83, 0.85 0.88, 0.81 0.79, 0.89 75, 75
Sensitive Info 0.89, 0.96 0.93 0.92, 0.93 0.96, 0.90 0.89, 0.96 75, 75
Contacts 1.00, 0.99 0.99 0.99, 0.99 0.99, 1.00 1.00, 0.99 75, 75
Emails or Text Messages 0.88, 1.00 0.94 0.94, 0.94 1.00, 0.89 0.88, 1.00 75, 75
Photos or Videos 0.91, 0.95 0.93 0.93, 0.93 0.94, 0.91 0.91, 0.95 75, 75
Audio Data 0.96, 0.97 0.97 0.97, 0.97 0.97, 0.96 0.96, 0.97 75, 75
Gameplay Content 0.92, 0.93 0.93 0.93, 0.93 0.93, 0.92 0.92, 0.93 75, 75
Customer Support 0.92, 0.92 0.92 0.92, 0.92 0.92, 0.92 0.92, 0.92 75, 75
Other User Content 0.89, 0.99 0.94 0.94, 0.94 0.99, 0.90 0.89, 0.99 75, 75
Browsing History 0.73, 0.69 0.71 0.72, 0.71 0.71, 0.72 0.73, 0.69 75, 75
Search History 0.80, 0.89 0.85 0.84, 0.85 0.88, 0.82 0.80, 0.89 75, 75
User Id 0.96, 0.97 0.97 0.97, 0.97 0.97, 0.96 0.96, 0.97 75, 75
Device Id 0.77, 0.93 0.85 0.84, 0.86 0.92, 0.80 0.77, 0.93 75, 75
Purchase History 0.80, 0.99 0.89 0.88, 0.90 0.98, 0.83 0.80, 0.99 75, 75
Product Interaction 1.00, 0.99 0.99 0.99, 0.99 0.99, 1.00 1.00, 0.99 75, 75
Advertising Data 0.88, 0.88 0.88 0.88, 0.88 0.88, 0.88 0.88, 0.88 75, 75
Other Usage Data 0.67, 0.83 0.75 0.72, 0.77 0.79, 0.71 0.67, 0.83 75, 75
Crash Data 0.92, 0.96 0.94 0.94, 0.94 0.96, 0.92 0.92, 0.96 75, 75
Performance Data 0.68, 0.87 0.77 0.75, 0.79 0.84, 0.73 0.68, 0.87 75, 75
Other Diagnostic Data 0.93, 1.00 0.97 0.97, 0.97 1.00, 0.94 0.93, 1.00 75, 75
Other Data Types 0.77, 0.63 0.70 0.72, 0.68 0.67, 0.73 0.77, 0.63 75, 75



C. Probability Distributions for Data Types After Classification

(a) Probability Distribution for Name (b) Probability Distribution for Precise Location

Figure 12: Shown here are two probability distributions (Name and Precise Location) after running our ensemble-based
classifier on the entire set of privacy policies (excluding training data). This figure characterizes classifier confidence
for each data type.



D. Distribution of Potential Compliance Issues

(a) Distribution of Potential Compliance Issues (b) CDF of Potential Compliance Issues

Figure 13: On the left is a graph of the distribution of the different types of potential compliance issues, and on the
right is a CDF of the different types of potential compliance issues.
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