
Helping Mobile Application Developers Create Accurate Privacy Labels

Jack Gardner∗, Yuanyuan Feng†, Kayla Reiman∗, Zhi Lin∗, Akshath Jain∗ and Norman Sadeh∗
∗School of Computer Science

Carnegie Mellon University, Pittsburgh, USA, {jhgardne, zlin2, kreiman, arjain}@andrew.cmu.edu, {sadeh}@cs.cmu.edu
†Computer Science Department

University of Vermont, Burlington, USA, yuanyuan.feng@uvm.edu

Abstract—In December, 2020, Apple began requiring devel-
opers to disclose their data collection and use practices to
generate a “privacy label” for their application. The use
of mobile application Software Development Kits (SDKs)
and third-party libraries, coupled with a typical lack of
expertise in privacy, makes it challenging for developers to
accurately report their data collection and use practices.
In this work we discuss the design and evaluation of a
tool to help iOS developers generate privacy labels. The
tool combines static code analysis to identify likely data
collection and use practices with interactive functionality
designed to prompt developers to elucidate analysis results
and carefully reflect on their applications’ data practices. We
conducted semi-structured interviews with iOS developers as
they used an initial version of the tool. We discuss how these
results motivated us to develop an enhanced software tool,
Privacy Label Wiz, that more closely resembles interactions
developers reported to be most useful in our semi-structured
interviews. We present findings from our interviews and
the enhanced tool motivated by our study. We also outline
future directions for software tools to better assist developers
communicating their mobile app’s data practices to different
audiences.

Index Terms—Privacy labels, mobile applications, compli-
ance, developers, Privacy Engineering

1. Introduction

For the past decade, researchers have been investi-
gating the potential for privacy labels as a standardized
notice to assist consumers in understanding digital privacy
[1]–[3], yet without large scale adoption, limited research
examined developer perspectives of these labels. The De-
cember 2020 introduction of privacy labels on the iOS
App Store was the first real-word rollout. Google has also
announced plans to release a similar Android privacy label
in 2022.1 Apple now requires iOS developers to provide
app privacy information when adding or updating their
applications in the App Store.2 Then, they synthesize the
information provided by developers into a standardized
label format to help iOS users understand the privacy
details for each application (see Fig 1).

1. https://android-developers.googleblog.com/2021/07/
new-google-play-safety-section.html

2. https://developer.apple.com/news/?id=vlj9jty9

Figure 1. Apple privacy label example

The Apple privacy label contains three sections of
information (i.e., data used to track you, data linked to
you, and data not linked to you) and provides both a high
level summary as well as a detail page of an application’s
data collection and use practices. While earlier studies
show privacy labels can enhance users’ understanding of
the privacy notice and available choices [1]–[3], how to
generate accurate privacy labels in a real-world context
remains under explored. The credibility and quality of any
privacy labels obviously depend on their accuracy.

Currently, Apple requires developers to fill out a web
form containing 32 data types and six purposes to provide
details on which data is used by their app and how,
but does not systematically verify the accuracy of the
information provided by developers - automating this
process is not feasible today (e.g., dead code, difficulty
of assessing what happens in the cloud or verifying third-
party practices), and systematic manual verification would
be prohibitive. Therefore, the accuracy of these privacy
labels largely depends on developers’ expertise and dedi-
cation as well as their understanding of the data practices
intended to be captured. A report from The Washington
Post suggested that a number of iOS apps have inaccurate
privacy labels [4]. A recent study by Li et al. revealed
developers’ misunderstanding in creating labels [5], which
resulted in under-reporting or over-reporting some of the
data practices of their apps. This is partially due to the
extensive adoption of Software Development Kits (SDKs)
and third-party libraries in app development, which makes
it complicated and time-consuming for developers to fig-

https://android-developers.googleblog.com/2021/07/new-google-play-safety-section.html
https://android-developers.googleblog.com/2021/07/new-google-play-safety-section.html
https://developer.apple.com/news/?id=vlj9jty9


ure out the data collection and usage of their applications
[6].

Failure to provide accurate privacy labels may have
dire consequences. In the US, the Federal Trade Com-
mission works to combat unfair and deceptive practices
that infringe upon individual privacy rights and ensure
that organizations act in-line with the privacy notices they
provide to the public.3 The California Consumer Privacy
Act and California Privacy Rights Act also provide new
privacy rights to Californians, place data protection obli-
gations on business, and grant enforcement authority to the
state’s Office of the Attorney General.4 The EU’s General
Data Protection Regulation also provides broad authority
to European regulators to hold organizations accountable
for ensuring that they are accurately disclosing their data
practices,5 and can entail significant financial penalties.

To ease the compliance burden developers may face
and to address challenges in accurately reporting data
collection and use practices, we developed Privacy Label
Wiz (PLW), a tool to help iOS developers examine their
source code and generate accurate privacy labels. This
paper details an iterative set of modifications to Privacy
Flash Pro (PFP) [7], [8], an open source software tool
that served as the basis for our development of a new tool,
Privacy Label Wiz (PLW). We leverage PFP’s static anal-
ysis framework that scans iOS applications’ Swift source
code and third-party libraries in Swift or Objective-C,
detects certain data types, and allows developers to better
understand the iOS permissions used by their application.
PLW has the specific goal of helping developers create
accurate privacy labels. It leverages results of static code
analysis functionality to guide the process and prompt
developers to reflect on their apps’ data practices. The
tool is designed to be highly interactive, recognizing the
limitations of static analysis functionality applied to the
code of mobile apps and leveraging interactions with
developers to make up for these limitations. The highly
interactive nature of the tool is further intended to align
with typical software development workflows. We report
on an initial set of user tests conducted with a first version
of our tool and how results of these tests informed our
later development process. We also discuss how these
results highlight the potential for this type of tool to
improve developers’ understanding of the data practices
of their apps and contribute to the development of more
accurate privacy labels. Despite being relatively crude,
the initial version of PLW proved very useful in helping
us further elucidate developers’ needs. In particular, by
conducting our initial evaluation of the tool in the form of
semi-structured interviews in which an interviewer knowl-
edgeable in privacy helped supplement the shortcomings
of the tool, we were able to identify interactions with
developers that contributed to helping them refine their
original privacy labels. Those developers further reported
that as a result of these interactions they had a clearer
understanding of their application’s privacy practices, and
had gained a better appreciation of the importance of
carefully considering privacy in the development process.

3. https://www.ftc.gov/news-events/topics/
protecting-consumer-privacy-security/privacy-security-enforcement

4. https://oag.ca.gov/privacy/ccpa
5. https://gdpr.eu/what-is-gdpr/

We discuss how these findings, and the feedback we
received from developers, contributed to improvements
to the design of Privacy Label Wiz and outline future
directions for our tool.

2. Related work

2.1. Alternative ways to improve privacy notices

Prior research has documented a variety of issues with
privacy notices including significant mismatch between
the meaning of privacy policies and users’ understanding
as well as a lack of uniformity in policy content and
format [9]. One approach to increasing privacy policy
comprehension is the development of layered privacy
policies [10] that use a standardized top-layer containing
concise descriptions and corresponding links to sections of
a full policy. Privacy icons offer another method to more
quickly provide privacy information to consumers and can
be integrated with web interfaces [11] to give users a quick
glance at a site’s privacy practices. Policy templates,6
(e.g., those designed to support GDPR compliance) also
promote standardized policy section headings and can
recommend key topics for organizations to include in their
privacy policies.

While these approaches are a step in the right direction
towards providing informative standardized notices, pol-
icy formats with standardized sections still allow policy
owners a high degree of flexibility in the content they
choose to provide, which means that consumers are still
faced with understanding a wide variety of policy content
[12]. Additionally, the use of icons can be problematic
since people are often interested in different sections of
privacy policies, and it is difficult to provide relevant
information in related icon descriptions [12]. Icons may
also be misinterpreted if no accompanying text is provided
[13], and icons along with other visual privacy notices
may present accessibility issues [14]. As privacy labels
are one means to address some of these challenges, we
focus our work on these labels and review related prior
research below.

2.2. “Privacy labels” as effective privacy notices

Providing privacy notices to consumers about applica-
tions’ data collection practices before obtaining consent
remains a current wide-spread approach to disclosing pri-
vacy practices, of which these labels are a part. Ideally,
consumers read privacy policies and then agree to the
policy based on understanding what companies plan to do
with their data. However, the cognitive time and cost of
reading privacy policies can make notice and choice im-
practical [15]. Privacy labels serve to increase the usability
of notices so that consumers can make informed choices
about their privacy and give more meaningful consent.
While several studies have found that merely relying on
notice and choice is inadequate to protect user privacy,
improving notices is still valuable [12], [16]. However,
the benefit of improved privacy notices can only be fully
realized when these notices are accurate [12].

6. https://gdpr.eu/privacy-notice/

https://www.ftc.gov/news-events/topics/protecting-consumer-privacy-security/privacy-security-enforcement
https://www.ftc.gov/news-events/topics/protecting-consumer-privacy-security/privacy-security-enforcement
https://oag.ca.gov/privacy/ccpa
https://gdpr.eu/what-is-gdpr/
https://gdpr.eu/privacy-notice/


Originally proposed in 2009 and tested in 2010, pri-
vacy labels have been discussed in academic circles for
over a decade in the context of solving issues with privacy
policies [1]. Important for our work, Carnegie Mellon Uni-
versity researchers, including one of the co-authors, first
studied the potential for mobile app privacy labels in 2013
and found that by providing individuals with a “privacy
facts” page in the app store descriptions of mobile apps,
individuals selected applications with fewer permissions
[3]. The clear presentation of privacy details benefited
users over the preexisting application permissions page
that users basically disregard. More recently, researchers
have extended the privacy label approach to Internet of
Things (IoT) devices [17], [18]. The present work was
conducted after Apple’s roll-out of privacy labels for iOS
applications, aiming to improve the accuracy of these
labels through our developer tool.

2.3. Barriers to create accurate privacy labels

Developers may make conscious and unconscious
choices that compromise both the privacy and the accu-
racy of privacy notices. Developers may sacrifice users’
privacy to implement features that will generate profits for
applications, such as using an advertising network without
evaluating the data collection practices of that network
[19]. Additionally, as developers range from those who
make applications in their spare time to those making
applications for large companies, their level of expertise
and the help they have access to also vary greatly [20].
Studies have shown that many apps suffer from potential
compliance issues with developers struggling in particular
with the disclosure of practices associated with the sharing
of data with third parties (e.g., third-party libraries) [21],
[22]. For instance, in a systematic analysis of over one
million Android in the Google Play Store, Zimmeck et
al. reported identifying an average of over 3 potential
compliance issues per application [23].

A significant barrier for developers to correctly iden-
tify and convey their applications’ data practices is the
widespread use of software development toolkits (SDKs)
for both functionality and advertising. An SDK is a set of
software tools and programs provided by mobile platforms
(e.g., iOS, Android) or third parties (e.g., Facebook, Twit-
ter) that allow developers to build applications using ex-
isting services. For example, Facebook’s SDK will enable
applications to have social login features via Facebook
accounts. While SDKs enhance applications with more
features and greatly simplify the development process,
they often also collect user data, track user behaviors, and
send those data back to SDK vendors, which has often
been the source of compliance issues. The phenomenon
of privacy leakage via SDKs has been well documented
for over a decade, especially on the Android platform
[22]–[25]. A recent case study showed that the SDKs
included in applications can collect users’ private data
(e.g., geographic locations, device identifiers) and send
them back to vendors via User Datagram Protocol (UDP)
connections even when the application is not used [26].

Moreover, SDKs may also provide sample code with
privacy invasive defaults that are unknown to develop-
ers, which impact developers’ coding decisions towards
potentially privacy-violating options. While application

developers may assume that SDKs abide by privacy laws,
the SDK platforms place the burden on developers to be
responsible for knowing what data is collected [21]. In
summary, these barriers in the application development
ecosystem prevent developers from creating accurate pri-
vacy labels. In practice, it seems unfair to expect all devel-
opers to have the necessary privacy expertise to identify
and disclose these issues. Instead this is an area that really
calls for the development of tools to assist developers.

2.4. Developer tools as a solution

The lack of resources and inability to accurately ana-
lyze and report data usage in mobile applications leads
to inconsistencies between applications’ stated privacy
practices and the data they actually use [22]. Prior research
shows that the static analysis of applications’ code coupled
with dynamic analysis of the related privacy policies can
help developers and the managers of mobile application
stores better understand when applications are under re-
porting their privacy practices [23]. As these tools become
more common, new efforts have been made to increase
the usability of static analysis tools and to ensure easy
integration into developers’ workflows [27].

Static analysis can also help alleviate some of the
load that developers face in understanding how their code
relates to privacy protection. Coconut, an Android studio
plug-in developed in 2018 showed promising results in
helping developers improve their privacy knowledge, al-
lowing them to write better privacy policies [28]. Privacy
Flash Pro, released in 2021, is a tool designed to help
iOS developers by combining static code analysis, a policy
template, and a wizard-based questionnaire [7], [8].

The studies above focus on improving accuracy when
developers are filling out privacy policies, which are a long
standing area where privacy expertise is needed. However,
Apple’s roll-out of privacy labels was the first time that
developers were asked to answer privacy questions about
their applications in a specific format with potentially
unfamiliar definitions. Challenges to using Apple’s web
form, including developers’ preconceived notions about
words (e.g., “tracking”) that do not match Apple’s def-
initions, have already been documented [5]. Other chal-
lenges, such as struggling with the complexity of memo-
rizing new definitions, or having knowledge blind spots,
are also common. This work builds on previous efforts
to help developers understand both how the code they
write relates to privacy and how the SDKs they are using
may need to be reported. We were motivated to build a
tool capable of matching an application’s code to Apple’s
privacy label. To our knowledge, our work is the first
attempt to help developers fill out Apple’s privacy label
web form.

3. The development of Privacy Label Wiz

Leveraging the static code analysis of Privacy Flash
Pro [7], [8] Privacy Label Wiz (PLW) detects whether data
is being used in an application by analyzing the function
calls in iOS applications as well as the use of third-party
libraries. By restructuring this analysis framework, PLW
provides a step-by-step guide to assist developers’ privacy



Figure 2. Map of permissions detected by PLW to data types defined by
Apple.

label creation process by encouraging them to carefully
review the data collection practices of their applications.

3.1. Analysis framework

PLW analyzes the code of iOS applications based
on the use of iOS permissions in applications’ Swift
code. As some iOS permissions do not align well with
the Apple data types that developers are asked to report
in the App Store, PLW does not solely rely on this
analysis. Instead it shows developers its findings while
also informing them about this misalignment and prompts
them to answer whether they may be collecting additional
data types. Similarly, as Apple defines data collection as
holding onto data “... for a period longer than necessary to
service the transmitted request in real time”, PLW cannot
simply rely on static code analysis. Understanding how
collected data may be linked to an individual or used to
track an individual is another area where interacting with
developers is crucial to supplement static analysis results.
For instance, if a developer stores a data field like last
login date on the same database line as the user ID, it
could be considered linked. Accordingly, PLW uses static
analysis results to trigger questions designed to prompt
developers to think about scenarios just like this.

3.2. Data mapping and interface design

We map the 11 permissions that PLW can detect via
the analysis of Swift code to the related data types defined
by Apple. We alert users to this mapping as they work
through the PLW user interface and conceptually show
this relationship in Fig. 2. PLW also makes clear to users
that there may not be a direct mapping from detected
permissions to Apple’s data types and allows developers
to say they are “not sure” whether they collect and use a
given data type as shown in Fig. 7.

In the refined version of PLW, we design a user
interface that resembles Apple’s web form for submitting
privacy labels but simplify the interface structure so that

developers interact with one page (see Fig. 3) for each
data type their application may collect and also allow
developers a degree of flexibility as they use the tool
so they can review their entries after taking an initial
pass through the tool. In particular, when developers say
they are “not sure” whether they collect a given data
type, we provide a summary page in the UI that lets
developers see their entries thus far and allows them to
revisit their answers for specific data types as needed to
eventually report an answer when they complete Apple’s
web form. In a set of reflection questions at the bottom of
the summary page, PLW also suggests that developers err
on the side of caution to report a given data practice and
informs them they can update their answer upon further
consideration. Fig. 12 presents this section of the interface.

In the summary page, we also provide guiding ques-
tions for developers to review to help them think of ad-
ditional resources they could consult to better understand
the data types they collect and how they may be using
those data. This set of questions is based on aspects of
the data collection process that developers had trouble
understanding [5].

4. Initial usability study with developers

4.1. Study design and recruitment

We conducted an initial usability study to examine the
potential value of PLW and evaluate how this tool could be
improved to best help developers in the future. We aimed
to recruit developers who had submitted an application
to the Apple App Store so we could obtain feedback
from developers that had completed Apple’s privacy label
process. The usability study required developers to run
an initial version of PLW locally on their iOS application
code and review a series of guiding questions while they
worked through the label creation process. Contextual
interviews [29] were used to learn about their experiences
with PLW. We recruited four iOS developers, three of
which had completed privacy labels. We posted recruit-
ment messages to a variety of platforms that are shown
starting at Fig. 19. We also clearly stated that PLW would
only locally scan an application’s source code and no data
of source code would be collected to address developers’
potential concerns. Our study protocol was approved by
Carnegie Mellon University’s Institutional Review Board.

4.2. Study results

We find that calling developers’ attention to each step
of the process, the data types involved, and how their data
types are used prompted them to consider more deeply
their application’s data collection practices. However, the
initial version of PLW did not stand alone. Developers
expressed that PLW lacked user friendliness, and in the
interviews, it was necessary to explain the purpose of each
section of our UI, confirming that our tool required addi-
tional improvements before it could be valuable outside of
the structured interview environment. Further, developers
would have liked if we provided more up-front clarity on
the limitations of the software tool to detect the data types
they used. As one developer expressed disappointment that



Figure 3. The refined UI design displays example results for an open source project and explains the analysis results to the developer.

no data types were detected in their application’s code,
such an acknowledgement could have made it clear that
this might happen from the start. An improved introduc-
tion to the guiding questions we present to developers to
help them think more deeply about their data collection
practices as well as an emphasis on the interactive nature
of PLW could have also clarified that certain data types
may not be detected. As one developer described Apple’s
definitions as “dense and hard to read”, developers also
requested additional information around how Apple’s data
types are defined (e.g., a short description or easily un-
derstood example relating to each data type).

In spite of the shortcomings in the initial version of
PLW, using the software tool during the interview process
led one developer to update their label after realizing their
data should not be considered linked to users when they
were prompted to consult documentation on the third-
party service they used. By reading this documentation,
this developer saw that the third-party service specifically
provided information on how to complete Apple’s pri-
vacy labels and understood that the functionality of the
particular version of the third-party service they used did
not constitute linking. The process of considering each
of Apple’s data types while using the initial version of
PLW also led another developer to consider in more detail
the difference between collection of product interaction
data and user generated content. By understanding that
product interaction involved clicking on certain features
in the application while user generated content involved
responses to specific questions that the user was asked to
fill out, this developer updated their label to report that
they had collected a data type for analysis purposes.

5. Refining Privacy Label Wiz

The findings reported above informed the redesign
of our tool. By refining the UI, we provide additional
guidance to developers, give them the ability to re-trace
their steps during the privacy label creation process, and
clarify the interactive nature of PLW by ensuring develop-
ers have a clear understanding of its underlying analysis
framework. The remainder of this section discusses major
refinements to our design.

Clarify the role of PLW: To better explain to devel-
opers how PLW works and to inform them that PLW’s
goal is to use static analysis to guide them through an
interactive series of screens that helps them systemati-
cally consider their mobile application’s data practices,
after developers load their iOS application into PLW, we
add a new overview page (see Fig. 4) that at a high-
level describes how PLW locally conducts static-analysis
on the iOS application’s source code and identifies iOS
permissions that are used by the application. This page
also previews the series of screens to follow and describes
to developers that when they continue through the PLW
interface, each following screen will focus on a single
data type where developers will be asked to answer a
series of questions that correspond to the information they
would have to provide in Apple’s web form: the purpose
for collecting the data type, whether the data is linked
to a user, and whether it is used to track the user. This
description also includes that the iOS permissions detected
by PLW may not map directly to the data types defined
by Apple.

Pagination of PLW UI: PLW’s old design only had
a results page where developers were presented with all



results of PLW’s analysis in addition to a list of Apple’s
data types that do not map directly to an iOS permission
that PLW can detect. In the current version, our goal is
to avoid overwhelming developers with information and
to allow them to think about how their application relates
to each of Apple’s data types one-by-one. Additionally,
this new UI structure more closely resembles that of the
Apple web form in which developers go through a series
of pages where they first select the set of data types they
collect and for each data type proceed to move through
three screens where they enter the purposes for collecting
that data type as well as linking and tracking information
(see Figs. 5-8). However, instead of having three separate
screens for each data type, we combine these screens into
a single page. PLW’s process also differs from Apple’s in
that it has developers start by providing information for
the data types PLW detected and then allows developers to
review a list of other data types they may be collecting to
then provide information for those data types as necessary.

Room for Uncertainty: As many developers are not
privacy experts and could be working through the privacy
label completion process for the first time, it is unlikely
that developers will be sure about the choices they make.
To allow for this, we add the option for a developer to
mark “not sure” alongside the standard yes-no options
that are included in pages where developers are asked to
provide information about the data types they collect. In a
summary page that developers can access during or after
they are done entering the relevant information for each
data type, indicators appear (see Fig. 10) next to the data
types for which a developer provided an uncertain answer.
This additional option may also prove useful as there may
not always be a direct mapping between the permissions
detected by PLW and the data types defined by Apple. We
address this by including additional text in the initial set of
screens that developers may see regarding the data types
detected by PLW. As mentioned earlier, the summary page
also includes text that encourages developers to report data
practices if they are not sure it is performed.

Tracking progress: As PLW is after all a wizard, we
now provide progress indicators. At the start of the series
of pages where developers provide information about their
data types, we include a pagination to allow developers to
easily navigate through the interactive portion of the tool.

Summary page: After developers move through a
series of pages for each data type they collect, they arrive
at a summary page (see Fig. 9) where they have the
chance to review all of the answers they’ve provided and
to select additional data types as needed. Developers can
also access this page at any point during the interactive
portion of the PLW UI via a summary button in the footer
of each screen.

6. Discussion

Based on our process of redesigning PLW and what
we have learned from developers, the remainder of this
section outlines further improvements of our tool and
future directions for software tools that support developers
in privacy compliance.

6.1. Static analysis

By scanning developers’ code, PLW is able to see
which third-party libraries are called and which permis-
sions are used. However, this does not actually show
which data are being collected, how long the data are
being stored, or the purpose of the data collection. Further-
more, even when correctly identifying third-party libraries,
the tool does not have the capacity to keep track of those
libraries’ privacy policies and codebase changes over time.
Therefore, it is not possible for this tool to answer all
questions that are needed for the privacy label in a way
that is guaranteed to be correct long-term, and it is also not
possible for this tool to answer questions about how data is
used. Given that Apple’s definition of data collection relies
on the data being stored for “longer than is necessary”
for the function of an application, PLW does not know
which data types are collected. We worked to mitigate
this limitation by providing the developers with guiding
questions and examples in the PLW UI, although this
guidance can likely be refined with additional testing.

6.2. Errors in library detection

Since PLW is an adaptation of the published open
source tool Privacy Flash Pro, we relied on the exist-
ing analysis framework. In two of the initial interviews
with developers, PLW was unable to identify Firebase,
a common third-party library. This is likely because the
developers’ iOS applications were structured differently
than the open source applications we used to test the
initial version of PLW. The current iteration of the tool
could be improved by better detecting libraries outside of
the Pods (third-party library) section of Apple’s integrated
development environment (IDE), Xcode, and it could also
be improved by querying Cocoa Pods’ (a common place to
get Apple SDKs) website in order to identify the practices
and existence of more than just the 300 applications that
the Privacy Flash Pro team originally added.

6.3. Providing developers with the resources they
need

Given the array of third-party services that developers
use, additional resources that allow developers to more
easily understand the data collection and use practices of
these services would help developers create more accurate
data collection disclosures. For example, a centralized
repository that provides privacy-related resources for fre-
quently used third-party services would help developers
more quickly locate information on data collection prac-
tices that are specific to a service. Some vendors such as
OneTrust have started to build these repositories, though
they are not integrated with tools like PLW. Ideally, a
tool like PLW would directly connect to relevant privacy
summaries for third-party libraries, enabling developers
to readily assess the privacy implications of using these
libraries or services.

Google’s Checks 7 is a recently introduced platform,
announced in February 2022, that aims to analyze mobile
applications and their data sharing practices by looking at

7. https://checks.area120.google.com

https://checks.area120.google.com


network flows, SDKs used, and an application’s privacy
policy to help developers achieve privacy compliance.
Future tools would ideally help developers identify pri-
vacy compliance issues during their development process,
help them better understand how their application’s data
collection and use practices specifically relate to privacy
compliance requirements, and if necessary, help them
identify alternative options.

Developers would also benefit from compliance tools
that let them record how they reached a certain conclu-
sion. As we further develop PLW, we look to add the
ability for users to add comments or notes that would let
them document certain resources they may have consulted
(e.g., the privacy policy of a third-party service) to better
support compliance and to help users more easily update
their labels as part of new releases.

6.4. Importance of interviewing developers

Software developers come from many different back-
grounds, and may be familiar with different vocabulary
and have different assumptions about what terms mean.
For example, Li et al. found that some developers ex-
pressed confusion about topics that they felt they should
know, and tracking was one of the definitions that devel-
opers often had preconceived notions about that actually
prevented them from being able to understand Apple’s
definition [5]. A tool that scans a developer’s code and
provides instructions for how to think about questions
that cannot be answered by static analysis alone requires
instructions that are meaningful to the developer. While
we sought to apply strategies such as having the simplest
instructions possible and thus minimizing cognitive over-
load, there will never be a single set of written instructions
that can work for everyone. This is a challenge with
both our interface and Apple’s. While we design PLW to
resemble interaction with a privacy expert, it is hard for
the software tool to measure up to receiving one-on-one
guidance on the completion of privacy labels.

Given that PLW’s initial instructions were not not fully
able to answer every developer question, our interviews
erred on the side of giving developers help when they re-
quested it. Some developers felt comfortable reading over
the definitions that Apple provides along with the guiding
questions provided in the initial PLW UI. However, others
requested clarification and were interested in discussing
whether their use of a data type met the criteria specified
in Apple’s web form. Thus, these conversations provided
additional guidance to developers beyond the scope of the
software tool, potentially leading them to make changes
to their privacy labels they would not have made with the
use of the software tool alone. Interviewing developers
with the updated version of PLW will be a crucial step in
ensuring that its improved instructions provide sufficient
guidance to developers and limit the need for individual
guidance.

6.5. Future evaluation of PLW’s effectiveness

While our initial set of interviews was formative and
guided us to refine PLW, a future within-subject study
examining how developers fill out labels both with and

without the improved PLW will better evaluate its effec-
tiveness. This future study will ideally include a larger
sample of developers with published applications and will
give developers access to PLW after they had filled out
Apple’s web form on their own to see if they update their
label. We plan to use the think aloud technique to identify
where challenges are present. We also plan to develop a
validated post-study survey to ask developers about their
experiences using PLW to rigorously assess its utility
and to examine any known inaccuracies. One challenge
is that we cannot know the ground truth regarding what
data applications collect and use for different purposes,
as per Apple’s definition. However, a privacy-expert’s
evaluation of the completed labels could still identify some
inaccuracies and check for trends on whether developers
were more likely to accurately complete certain parts of
the privacy labels after using PLW.

6.6. Simplifying privacy labels across platforms

While Apple is the only platform that currently re-
quires developers to fill out these labels, similar require-
ments are being rolled out in the Google Play Store, with
slightly different definitions [30]. In addition to studying
whether static analysis tools like PLW can be helpful,
future research could explore methods to help developers
navigate the differences in process and definitions across
platforms. We already see in our work that Apple’s niche
definitions can cause problems for developers, and given
that many developers create apps that are deployed on
both Apple and Android platforms, they will likely have
to address each platform’s requirements separately.

7. Conclusion

The interviews we have conducted and the improve-
ments we have made to PLW illustrate the potential of
software tools that statically analyze code for iOS apps
to help developers fill out labels more accurately and to
learn more about privacy. This analysis could further be
supplemented with dynamic code analysis [26] to better
understand runtime behavior and inform developers how
this behavior could relate to their privacy labels. Although
more rigorous testing is still needed, our work shows the
potential for a tool that mimics a conversation with a pri-
vacy engineer to help developers improve their labels and
increase their privacy compliance knowledge. In particu-
lar, resembling the steps in Apple’s privacy label interface,
addressing the limitations of the static analysis process
underlying PLW, and providing a chance for developers
to revisit their choices while reviewing examples of data
collection practices and comments to simplify the data
type and collection definitions issued by Apple has the
potential to substantially benefit developers and streamline
the privacy label creation process.

Large operators in mobile application ecosystems
could also simplify the privacy label creation process
by providing descriptions of how the permissions used
in mobile applications may relate to the data types they
define. Further, describing common actions that mobile
applications perform and how they meet the definitions
provided in the privacy label process may help developers



better tie the function of their application to the practices
they should report.

Acknowledgments

We are grateful to Aerin Zhang and our reviewers
for their feedback and help in refining this work. This
research was supported in part by grants from the Na-
tional Science Foundation Secure and Trustworthy Com-
puting program (CNS-1801316, CNS-1914486). Part of
the work on mobile app privacy compliance and static
code analysis was conducted under the Usable Privacy
Policy Project(https://usableprivacy.org - NSF Grant CNS-
1330596). Additional support for this work was provided
in the form of an unrestricted gift from Google’s privacy-
related faculty award.

References

[1] P. G. Kelley, J. Bresee, L. F. Cranor, and R. W. Reeder, “A
“nutrition label” for privacy,” in Proceedings of the 5th Symposium
on Usable Privacy and Security, SOUPS ’09, (New York, NY,
USA), Association for Computing Machinery, 2009.

[2] P. G. Kelley, L. Cesca, J. Bresee, and L. F. Cranor, “Standardizing
privacy notices: An online study of the nutrition label approach,” in
Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’10, (New York, NY, USA), p. 1573–1582,
Association for Computing Machinery, 2010.

[3] P. G. Kelley, L. F. Cranor, and N. Sadeh, “Privacy as part of
the app decision-making process,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’13,
(New York, NY, USA), p. 3393–3402, Association for Computing
Machinery, 2013.

[4] G. Fowler, “I checked apple’s new privacy ‘nutrition labels’. Many
were false,” The Washington Post, 2021.

[5] T. Li, K. Reiman, Y. Agarwal, L. F. Cranor, and J. I. Hong,
“Understanding challenges for developers to create accurate pri-
vacy nutrition labels,” in CHI Conference on Human Factors in
Computing Systems (CHI ’22), (New York, NY, USA), Association
for Computing Machinery, 2022.

[6] S. Morrison, “The hidden trackers in your phone, explained,” Vox,
2020.

[7] S. Zimmeck, R. Goldstein, and D. Baraka, “PrivacyFlash Pro:
Automating privacy policy generation for mobile apps,” in 28th
Network and Distributed System Security Symposium (NDSS 2021).
NDSS, 2021.

[8] S. Zimmeck, P. Story, R. Goldstein, D. Baraka, S. Li, Y. Feng, and
N. Sadeh, “Compliance traceability: Privacy policies as software
development artifacts,” in Open Day for Privacy, Usability, and
Transparency (PUT), Stockholm, Sweden, 2019.

[9] J. R. Reidenberg, T. Breaux, L. F. Carnor, B. French, A. Grannis,
J. T. Graves, F. Liu, A. McDonald, T. B. Norton, R. Ramanath,
N. C. Russell, N. Sadeh, and F. Schaub, “Disagreeable privacy
policies: Mismatches between meaning and users’ understanding,”
Berkeley Tech. L.J.. Berkeley Technology Law Journal, vol. 30,
no. IR, p. 39.

[10] “Multi-layered notices explained,” The Center for Information
Policy Leadership, 2004.

[11] S. Egelman, J. Tsai, L. F. Cranor, and A. Acquisti, “Timing is
everything? The effects of timing and placement of online privacy
indicators,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09, (New York, NY, USA),
p. 319–328, Association for Computing Machinery, 2009.

[12] L. F. Cranor, “Necessary but not sufficient: Standardized mech-
anisms for privacy notice and choice,” J. on Telecomm. & High
Tech. L., vol. 10, p. 273, 2012.

[13] H. Habib, Y. Zou, Y. Yao, A. Acquisti, L. Cranor, J. Reidenberg,
N. Sadeh, and F. Schaub, “Toggles, dollar signs, and triangles: How
to (in)effectively convey privacy choices with icons and link texts,”
in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, CHI ’21, (New York, NY, USA), Association
for Computing Machinery, 2021.

[14] F. Schaub, R. Balebako, A. L. Durity, and L. F. Cranor, “A design
space for effective privacy notices,” in Eleventh Symposium On
Usable Privacy and Security (SOUPS 2015), (Ottawa), pp. 1–17,
USENIX Association, July 2015.

[15] A. M. McDonald and L. F. Cranor, “The cost of reading privacy
policies,” ISJLP, vol. 4, p. 543, 2008.

[16] F. H. Cate, “The limits of notice and choice,” IEEE Security &
Privacy, vol. 8, no. 2, pp. 59–62, 2010.

[17] Y. Shen and P.-A. Vervier, “IoT security and privacy labels,” in
Annual Privacy Forum, pp. 136–147, Springer, 2019.

[18] P. Emami-Naeini, Y. Agarwal, L. F. Cranor, and H. Hibshi, “Ask
the experts: What should be on an IoT privacy and security label?,”
in 2020 IEEE Symposium on Security and Privacy (SP), pp. 447–
464, IEEE, 2020.

[19] A. H. Mhaidli, Y. Zou, and F. Schaub, “We can’t live without them!
App developers’ adoption of ad networks and their considerations
of consumer risks,” in Fifteenth Symposium on Usable Privacy and
Security (SOUPS 2019), (Santa Clara, CA, USA), pp. 225–244,
USENIX Association, Aug. 2019.

[20] R. Balebako, A. Marsh, J. Lin, J. I. Hong, and L. F. Cranor, “The
privacy and security behaviors of smartphone app developers,” in
Workshop on Usable Security, 2014.

[21] M. Tahaei and K. Vaniea, “Developers are responsible: What ad
networks tell developers about privacy,” in Extended Abstracts
of the 2021 CHI Conference on Human Factors in Computing
Systems, pp. 1–11, 2021.

[22] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu, F. Schaub,
S. Wilson, N. Sadeh, S. Bellovin, and J. Reidenberg, “Automated
analysis of privacy requirements for mobile apps,” in 2016 AAAI
Fall Symposium Series, 2016.

[23] S. Zimmeck, P. Story, D. Smullen, A. Ravichander, Z. Wang, J. R.
Reidenberg, N. C. Russell, and N. Sadeh, “Maps: Scaling privacy
compliance analysis to a million apps,” Proc. Priv. Enhancing
Tech., vol. 2019, pp. 66–86, 2019.

[24] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang,
“Expectation and purpose: Understanding users’ mental models of
mobile app privacy through crowdsourcing,” in Proceedings of the
2012 ACM Conference on Ubiquitous Computing, UbiComp ’12,
(New York, NY, USA), p. 501–510, Association for Computing
Machinery, 2012.

[25] J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center, “ScanDal: Static
analyzer for detecting privacy leaks in android applications,” in
MoST 2012: Mobile Security Technologies, vol. 12, (Los Alamitos,
CA, USA), IEEE, 2012.

[26] J. Reardon, N. Good, R. Richter, N. Vallina-Rodriguez, S. Egel-
man, and Q. Palfrey, “Jpush away your privacy: A case study of
Jiguang’s Android SDK,” International Computer Science Institute,
2020.

[27] D. Tiganov, L. Nguyen Quang Do, and K. Ali, “Designing UIs for
static analysis tools,” ACM Queue, 2021.

[28] T. Li, Y. Agarwal, and J. I. Hong, “Coconut: An IDE plugin for
developing privacy-friendly apps,” Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2,
no. 4, pp. 1–35, 2018.

[29] K. Holtzblatt and S. Jones, “Conducting and analyzing a contextual
interview (excerpt),” in Readings in Human–Computer Interaction,
pp. 241–253, Elsevier, 1995.

[30] “Following Apple’s launch of privacy labels, Google to add a
‘Safety’ section in Google Play,” TechCrunch. Accessed 16 Nov.
2021.

https://usableprivacy.org


Appendix A.
The Privacy Label Wiz User Interface

Figure 4. PLW Overview.

Figure 5. PLW main results.



Figure 6. Selecting usages on the results screen.

Figure 7. Selecting whether data is linked to users on the results screen.



Figure 8. Selecting whether data is used to track users on the results screen.

Figure 9. Top of PLW summary page



Figure 10. Warning about “not sure” answer on PLW summary page

Figure 11. Selecting additional data types on PLW summary page



Figure 12. Reflection questions on PLW summary page

Appendix B.
Interview Protocol with the initial Privacy Label Wiz

Introduction and setup
Hello, my name is []. Thank you for your interest in our research study. Let’s begin with setting up the study

environment. In a moment I will provide a link to a GitHub repository where we are hosting the software tool we
will ask you to run as a part of this study. When I post the link in the repository, please feel free to take a look at
the repository if you’d like. Now, in your terminal, please navigate to a directory where you’d be willing to clone this
repository. Once you’re there, you can enter this command to clone our branch.
Post in Zoom chat: git clone -b <branch name>. github url

Now that the repository has been cloned, we recommend setting up a virtual environment to run our software tool.
If you have a preferred method to set up an environment, you may use that. Alternatively, we’ve provided a short
bash script in the cloned repository that will set up a Python virtual environment for you and automatically run the
application. The script is called “startpfp.sh”, you can run this in your terminal with “bash startplw.sh”.
Post in Zoom chat: bash startplw.sh
Now the app should be started, developer is viewing the consent form

Now, please take a moment to read over this page and let me know if you have any questions.
Consent form filled out

We will begin recording shortly. At this time, please share your screen and turn off your camera.
If privacy labels were filled out, continue to use PLW
If not filled out
Do you have about an hour of time available? We’d like to ask you to fill out the privacy details for your application
before we ask you to use our software tool.
Wait as developer fills out the app privacy details without assistance
Using PLW

Now, please take a moment to familiarize yourself with the application. As you use the software tool today, please
let us know if you find particular parts of our software tool confusing, and I’ll do my best to clarify.
If asked to explain layout:
The right hand side of the application lists the data types that the software tool detected in your application’s code.
First party types, i.e., data types detected in your application’s code are listed first, followed by the data types detected
in any third party libraries that the software tool sees you’re using.
The left hand side of the application guides you through the process of thinking through your application’s data collection



practices and then how that relates to completing Apple’s privacy labels.
If asked to explain permissions (PLW Data Types):
The data types under “PLW Data Type” are the permissions that our software tool detects in your application’s code,
and we map those to the data types defined by Apple.
If asked to explain left hand side guidance:
First is an overview of the steps required to complete the app privacy details required by Apple. Then, we offer additional
instructions for resources you may want to consult to better think about your data collection practices.
Next, let me ask you to go back to the app privacy details page for your application and make updates as necessary.
As you go through the process of updating your details, may I ask that you mention any parts of this process that you
find confusing?

Privacy label process has been reviewed

Now we’ll ask you to read through the reflection questions further down on the left hand side of the software tool.
As you do this, please keep your privacy label interface open in case you want to make updates.

Closing

Before we conclude, would you like to offer any final thoughts on our software tool or on the process of filling out
privacy labels?
Thank you very much for taking part in this interview. Have a great rest of your day.

Appendix C.
Additional screenshots of PLW

Figure 13. Consent form 1



Figure 14. Consent form 2

Figure 15. Consent form 3



Figure 16. Consent form 4

Figure 17. PLW running analysis



Figure 18. Loading iOS project into PLW

Appendix D.
Recruitment

As our recruitment process was iterative, we provide the messages we used to recruit developers from a variety of
sources. These messages start at Fig. 19.



Figure 19. The first message we posted on Apple Developer Forums



Figure 20. An adapted message we sent to Carnegie Mellon University Computer Science undergraduates

Figure 21. An abbreviated message we posted on the iOS Programming subreddit


	Introduction
	Related work
	Alternative ways to improve privacy notices
	``Privacy labels'' as effective privacy notices
	Barriers to create accurate privacy labels
	Developer tools as a solution

	The development of Privacy Label Wiz
	Analysis framework
	Data mapping and interface design

	Initial usability study with developers
	Study design and recruitment
	Study results

	Refining Privacy Label Wiz
	Discussion
	Static analysis
	Errors in library detection
	Providing developers with the resources they need
	Importance of interviewing developers
	Future evaluation of PLW's effectiveness
	Simplifying privacy labels across platforms

	Conclusion
	References
	Appendix A: The Privacy Label Wiz User Interface
	Appendix B: Interview Protocol with the initial Privacy Label Wiz
	Appendix C: Additional screenshots of PLW
	Appendix D: Recruitment

